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Dynamical generalization of nonequilibrium work relation
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The evolution of systems in contact with thermal, chaotic, or turbulent surroundings—often modeled with
stochastic equations of motion—can be particularly complex when these equations of motion are nonautono-
mous, that is, when external parameters of the surroundings are varied with time. In this paper we establish a
rigorous equality relating the nonautonomous behavior of such a system, to solutions of the corresponding
autonomous equations of motion, for arbitrary initial conditions. If the system is initially in thermal equilib-
rium, we recover previously known results relating nonequilibrium work values to equilibrium probability
distributions. We discuss specific examples of our result, and suggest an experimental setting in which it might
be verified.
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Consider a system that is coupled to both a heat bath as$ identical to the equilibrium distribution corresponding to
temperatureT=4"1, and an externally controlled work pa- the current value of the work paramefgight side of Eq.
rameteru, and imagine that we subject this system to a pro{1)]. This remains true even j& is varied rapidly and vio-
cess during which the work parameter is varied in time. Follently, so that the system gets driven substantially out of
such a process the following equality holgRef. [1], Eq.  equilibrium during a typical realization of the process. Hum-
(18)]: mer and Szab§2] have drawn attention to a close connec-

1 tion between Eq(1) and the Feynman-Kac theorem.
_ _ —— _ By integrating both sides of E@l) with respect ta, one

(OX(®) = xJexi - WD) ] Z, exi = AH(u®X)], - (1) arrives at an equality relating nonequilibrium work values
ot e , N and equilibrium free energy differencgs-6]. These results
where w(t) = [odt’ u(t')9,H(u(t'), x(t")) is the work per- 4o cigsely related to a class fiictuation theoreméor en-
formed on the system, up to tinte by the variation of the  {rqny production, which can be formulated either for non-
parameteru. Here H(u,x) is the microscopic Hamiltonian  equilibrium steady statdg—12), or for systems driven away
for the system of interest, expressed as a function of thgom an initial state of equilibriuni13—16. Moreover, it has
system’s microstate and the work parameter; u(t') speci-  peen showr{16-19 that the results of Ref§1-6] can be
fies the externally imposed schedule for varying this paramgeneralized to apply to situations in which the thermal bath
eter(and u=du/dt’); andx(t’) gives the microscopic evolu- s replaced by another source of noise, such as a stochastic
tion of the system during a single realization of this processhath that drives the system to a nonequilibrium steady state
The angular brackets denote an average over all possiblg/hen . is held fixed, or a chaotic or turbulent baf20]. In
trajectoriesx(t’)—equivalently, an average over realizationsrecent years, a number of optical micromanipulation experi-
of the thermal noise generated by the heat bath—and theients have provided confirmation of a number of these the-
independent variablg appearing on both sides of the equa- oretical prediction§21-25.
tion is an arbitrary point in the phase space of the system. Equation(1) establishes a relationship between the behav-
Finally, Z,=[dxexd -BH(x(0),x)] is the partition function jor of the system when the paramejeris varied with time
for the equilibrium state associated with the initial value of[on the left-hand sidé€lhs)] and the equilibrium distribution
the work parameter. In Ref1] it was assumed thdg) the  at fixed u [on the right-hand sidéhs)]. In effect, this result
noise driving the system is thermal in origin, generated by asserts that equilibrium information is encoded in the
heat bath at equilibrium, an@) at the initial timet’=0 the  nonequilibrium dynamics of the system. The quantity
system is in equilibrium with the bath, and therefore de-exd-pw(t)] provides the key to decoding this information;
scribed statistically by the Boltzmann-Gibbs distribution. by endowing each nonequilibrium realization with a statisti-

The left side of Eq(1) is aweighted distribution function cal weight exp—Aw(t)], we recover the equilibrium distribu-
(WDF), which is analogous to an ordinapyobability distri-  tion. More formally, Eq.(1) relates thenonautonomousvo-
bution function(PDF), except that each realization in the |ution of the system, to stationary solutions of corresponding
ensemble carries a time-dependent statistical weighutonomousequations of motiori26], provided the system
exd —pw(t)]. (If we picture the ensemble of realizations as abegins in a stationary state.
swarm of particles evolving ir space, and imagine that each |t is natural to wonder whether E¢L) can be generalized
particle has a time-dependent “mass” expw(t)], then the by relaxing either or both of the two conditions mentioned
WODF is analogous to a mass density, whereas the PDF is likebove. The investigations initiated by Hatano and Sasa’s re-
a number density1].) Equation(1) tells us that the WDF search16-19 represent a relaxation of conditi¢a). In this
evolves in a very simple manner: apart from normalization, itRapid Communication we relax conditigh), and show that
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Eq. (1) can be generalized to accommodate arbitrary distri- - . g G
butions of initial conditions. Our central results then relate %G = L,nG+ B N 8(t) (A 8(x = x7), (4)
the system’s nonautonomous evolut[dims, Eqgs.(7) and(9)] K
to general solutions—e.g., Green functions—of the autonowhere the last term on the left side is simply a continuity
mous evolutionrhs, Egs.(7) and (9)]. In other words, we term accounting for the evolution &f(t). Let us finally in-
establish a link between the evolution of the system when th@oduce the convolution of expA) with the joint Green
parametef is held fixed, and its response to arbitrary varia-function:
tions of that parameter. As with E€L), the crucial element
of this link is a statistical reweighting procedure: by assign- Q%[ ])
ing a weight of the form eXp-A(t)] to each nonautonomous ALK
realization, we reconstruct the autonomous evolution. _
As in Ref.[1], we assume that the dynamics of our system = (80(t) - ex - A Do, )
are described by a Markov process, where(- - -),0 indicates an average over realizations launched
X= L% ), from initial conditionsx®. The functionQ that we have con-
structed is a WDF, in which each realization carries a statis-
where{(x, u) generally includes both deterministic and sto- tical weight exp-A(t)]. From Egs.(4) and (5) we get an
chastic terms, the latter generated by a heat bath or otheiolution equation foQ after a single integration by parts
source of noise. Note that the work parameteappears in 5
the equations of motion as a control parameter. We will be _ 7 G _\0
interested in a process during which the system evolves in *Q E”(t)QJrMa,MQ = A0 Ax=x7. ©)

time asu is varied externally, according to some arbitrary . . o
(not necessarily quasistaticschedule [u]={u(t'),0<t’ For an arbitrary schedulg:] the solution of Eq(6) is given

- - 0 i ifi i

<t}. Under these assumptions, the probability distributionbbe._e}.(Fi ‘P(X.’t|xh"u“§t))]' r-]rh'? can be ve;]med Iby_ dwe;:t

function (PDP P(x,t)=(8qx-x(t)]), describing a statistical su stltqtloq, using the fact that for cpnstamt €so ution o
7 : Eq. (6) is given by Eq.(2). We thus finally arrive at

ensemble of realizations of this process, evolves under a

master equation, (8(x(t) = x)exd — A(t) o = G(x,tx°, u(t)), (7)

aP=L,0P, with no restrictions on the time dependenceuf).
While Eq. (7) pertains to as-function distribution of ini-

tial conditions, we can easily generalize this result. Consider
a parameter-dependent family of distributiop$x, «), and

now defineG and ¢ by

G(x [l w) = expl- e(x,tllp], 1)} = explL Hp(x, ),

(?tG - LM(I)G = 6(':) 5(X - XO) . (8)
Note the explicit dependence &f on the schedulgu]. We ~ analogous to Eq(2). Then by following exactly the same
next introduce an autonomous Green functi@r(along with procedure as led to Eq7), we arrive at

a related functiorp=-In G), describing the evolution of the (3(x(t) = x)exd— At ]y, = 6(x,t|[p],,u(t)), 9
system wheru is held fixed

f dAexd - AJG(x, A tx, [ w])

where the transition operatof, specifies the parameter-
dependent stochastic dynamics.

Let us define the Green functid®d(x,t|x°,[u]) to be the
probability of observing the system in microstatat timet,
given an initial microstate® at time 0

o R where(: --);,) denotes an average over an ensemble of real-
G(x,tx% w) = exd— o(x,tx%, w)] = exp(L ,t) 8(x = xO). izations with initial conditions sampled fropix, «(0)], and
) A(t) is defined as in Eq(3), but with [p] rather thanx®

) ) appearing as the argument 8fe. For the special choice
Now returning to the general case of an arbitrary schedulg,x ;)= 8x-x?), we recover Eq(7). On the other hand, if

[1], let us define an observable we takep(x, u) =pS(x, u), wherep® is the stationary distribu-
B t o o ) tion corresponding to a fixed value pf(i.e., Eﬂpsz 0), then
A = . dt’ w(t) 3, (x(t") X, t; u(t')). G e getG(x,t|[p], w) =pS(x, ), which is the situation consid-
_ N _ ered in Refs[1,2,14-19.
We can think ofA as an auxiliary variable, analogousvit) Equation(7) and its generalization, E@9), constitute the

in Eq. (1), evolving under the equation of motidkF wd,¢. central results of this paper. As mentioned earlier, the left
(Note that information about the autonomous evolution enside in each case pertains to nonautonomous equations of
ters the definition ofp, through the functionp.) Now con-  motion; the average is defined over trajectories evolving as
sider a joint Green functiog(x,A,t|x°,[«]), which is the is varied with time. By contrast, the right side pertains to
probability for reaching a microstateand a specific valud&  autonomous equations of motio®;describes evolution with

at timet, given initial conditionsx(0)=x° andA(0)=0. This  u held fixed. Equation$7) and (9) show that, by assigning
function satisfies the master equation an evolving weight exXp-A(t)] to every member of the non-
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autonomous ensemble, we recover the autonomous solution. t

These results can be generalized further, as follows. Let B(t) =—InZy+ pw(t) +f dt’ n(x(t'),t"), (16)
us refer toud,¢ as thegeneratorof the statistical weight 0
exp[—A(t)]r?ppearing in EqSI(Zi) and (9), i-‘:‘-' ﬂ%@his the \évhere w(t) and Z, are defined as for Eq(1), and 7
quantity whose time integral determines the weight assigned g1 .-gH Fhi ;
to a trajectory by Eq(3). Now consider a WDF constructed e?L,& . Combining these results gives us
with a different(as yet unspecifiodgenerator(x,t) exd - BH(u(t),x)]
Zy

P(x,t) = (x(t) - x]exd - B(t) ]), (10

t

(A[x(t) — x]exd - Bw(t) + J dt’»]) =
0

(17

! Note that if the autonomouS§.e., fixed u) dynamics are

B(t) =Bo+ f 0 dt' Q[x("), ], balanced—that is, if they preserve the canonical distribution
_ _ - (£,&PH=0)—then »=0 and we recover E¢(1). [Indeed,
whereB,=-In [ dxP(x,0) simply allows for an arbitrary ini- Eq. (1) was derived in Ref1] under the explicit assumption
tial normalization ofP. Futhermore, suppose we waitx,t) () that this condition is satisfiedWith this in mind, we can

to evolve according to the equation view Eq.(17) as a stronger version of E€l), which reveals
how to construct equilibrium distributions from averages
P(x,t) = exd = ¢(x,0)], (1) over nonequilibrium trajectories, even when the autonomous

for a particular(but arbitrary function . We now show how dynamics are not balanced, e # 0. By integrating both
we can chooseé so that Eq.(11) is satisfied. The WDF Sides with respect ta, we obtain
defined by Eq(10) evolves according to t

P (exp - pw(t) + f dt'gl) =exd- BAF(D],  (18)
Z oz, - (12) ° |
s where AF(t)=F )~ F ) is the free-energy difference be-
Jween the equilibrium states corresponding to parameter val-
ues w(0) and u(t). This is a generalization of the nonequi-
librium work theorem(e#"y=e#AF derived previously for
the case when the autonomous dynamics are baldiedi
Example 2 Suppose that we have some dynamics
={%x, ) that are balanced, i.e.ﬁﬁ exgd—BH(u,x)]=0.
Now suppose that whep is varied with time, the system

obeys the following dynamics:
This result gives a prescription for choosing a generator

[This result can be obtained by following the steps that led t
Eq. (6).] Since we want Eq(11) to solve this equation, we

replaceP with exp(—¢) in Eq. (12), then rearrange terms to
get

L

Q="+ 'L, e, (13)

Q(x,1), such that the corresponding WDJgiven by Eq. X= L% g, ) = 006 ) + o (X, ), (19
(10)] has the desired time dependerBe,exp—), Eq.(11).

It is easy to reproduce Eqgé7) and(9) within the frame- . P P Op_ 9
work of the previous paragraph. For instance, if we choose € LuP=LuP ’udx[v(x"u)P]’

t)=¢[Xx,t|x%, u(t)] then Eq.(1 . . ,
¥x,D=¢lX,t|x*, u(v)] then Eq.(13) becomes wherev(x, w) is an arbitrary vector field. Under these dy-

o . I A I namics, every infinitesimal changk in the external param-
Q= a et eL,e’= meo (14)  eter induces a changix=v(x, u)du in the microstate of the
® ® system, in addition to the autonomous dynami€s Now
which leads immediateljvia Eq. (10)] to Eq. (7). Similarly ~ imagine an ensemble evolving under these equations of mo-
the choicey(x,t)=o(x,t|[p], u(t)) leads to Eq(9). We now  tion, and suppose that we want to construct a WDF that
briefly discuss two further examples within this framework, €volves according t@(x,t)=exd-BH(u(t),X)] (as in Ex-
which lead to generalizations of Ef). ample 3. Equation(13) then gives us
Example 1 Given a HamiltoniarH(w,x), Markovian dy- oH R oH
namics £, and a particular schedufa:] for varying the ~ Q(x.0)=Bu—+ ML e = M(ﬁ— +BpyVH-V v) .
iz o
work parameter, suppose we want to construct a WDF that
evolves as an unnormalized Boltzmann-Gibbs distributionwhereV=4/dx. This result shows us how to extend Et) to
Px,t)=exd-BH(u(t),x)], that is, ¥(x,t)=BH(u(t),x). dynamics of the sort given by E¢L9), and is applicable to
Equation(13) then gives us the generator numerical simulations in which nonphysical “metric scaling”
terms of the formuv(x,u) are added to the equations of
Qxt) = ﬂﬂZ_H N eﬁHZMe'BH. (15) [n;%ion so as to keep the system close to thermal equilibrium
g Finally, our central result can be illustrated by the follow-
Hence, ing gedanken experiment. Consider a single polymer mol-
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ecule attached to two micron-sized beads, immersed in row imagine a measurement during whi¢hy we vary the
statistically steady chaotic and/or turbulent flow. Further-parameteru after releasing the beadb) we monitor the

more, imagine that the beads are initialty<0) held in place  pead-to-bead distanc&t), and(c) we construct the quantity
with micropipettes and/or tightly focused optical tweezers, —

so that the initial bead-to-bead distance takes on a fixeﬁ(t) from E‘?- (3),' using the tabulated funcnoﬁ obtained
value.x°. Now att=0 we release one of the beads and welTom the calibration runs. We repeat this measurement many

monitor its subsequent dynamics, which will be driven by afimes, always following the same protocol for varying the
combination of thermal fluctuations and chaotic flow. By parameteru, and at the end we construct the weighted his-
repeating such a measurement many times, we can, iogram(dx(t)—x]Jexd—A(t)]), at some time. According to
principle, determine the autonomous Green functionEq. (7) this weighted histogram should coincide with the
G(x,t|x%, u) to a desired level of accuracy, simply by con- previously tabulated Green functioﬁa#(t)(x|x°,t), where
structing a histogram of the observed bead-to-bead distangg(t) denotes the values of the external parameter at time
at a timet after the release of the bead. Heueis some  during the protocol. In view of single-molecule pulling ex-
external parametdperhaps the temperature or mean flow Ofperiments such as those of Rdf21,25 an experiment along

the turbulent fluid, or the strength of an externally appliedihe jines outlined above might well be feasible, and would
electric or magnetic field that acts on the released btrad provide a direct test of our predictions.

is held constant during the above “calibration” procedure.

Now imagine that we repeat this calibration for a number of V.C. acknowledges the support of Wayne State University.
fixed values ofu, thus obtainings(x,t|x°, u) over arange of M.C. and C.J. acknowledge support by the Department of
parameter values. With this information under our belt, weEnergy, under Contract No. W-7405-ENG-36.
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